- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adler, Thomas (2)
-
Harpold, Adrian (2)
-
Li, Li (2)
-
Sterle, Gary (2)
-
Wen, Hang (2)
-
Bristol, Caitlin (1)
-
Hanley, John (1)
-
Hanley, John P. (1)
-
Perdrial, Julia (1)
-
Perdrial, Julia N. (1)
-
Rizzo, Donna (1)
-
Rizzo, Donna M. (1)
-
Underwood, Kristen (1)
-
Underwood, Kristen L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Underwood, Kristen L.; Rizzo, Donna M.; Hanley, John P.; Sterle, Gary; Harpold, Adrian; Adler, Thomas; Li, Li; Wen, Hang; Perdrial, Julia N. (, Water Resources Research)Abstract Research at long‐term catchment monitoring sites has generated a great volume, variety, and velocity of data for analysis of stream water chemistry dynamics. To harness the potential of these big data and extract patterns that are indicative of underlying functional relationships, machine learning tools have advantages over traditional statistical methods, and are increasingly being applied for dimension reduction, feature extraction, and trend identification. Still, as examples of complex systems, catchments are characterized by multivariate factor interactions and equifinality that are not easily identified by most machine‐learning methods. Using dissolved organic carbon (DOC) dynamics as an illustration, we applied a new evolutionary algorithm (EA) to extract geologic, topographic, meteorologic, hydrologic, and land use attributes that were correlated to mean stream DOC concentration in forested catchments distributed across the continental United States. The EA reduced dimensionality of our attribute dataset to identify the combination of factors, and their specific value ranges, that interacted to drive membership in High or Low mean DOC clusters. High mean DOC concentrations were associated with two distinct geographic locations of variable climatic and vegetative conditions, indicating equifinality. Our findings underscore the importance of critical zone structure in mediating hydrological and biogeochemical processes to govern DOC dynamics at the catchment scale. This multi‐scale, pattern‐to‐process approach is being applied to refine hypotheses for process‐based modeling of DOC dynamics in forested headwater streams at catchment to site scales.more » « less
An official website of the United States government
